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Parkinson’s disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases 
representative of α-synucleinopathies characterized pathologically by α-synuclein-abundant Lewy 
bodies and glial cytoplasmic inclusions, respectively. Embryonic stem cells, fetal mesenceph-
alic neurons, and neural stem cells have been introduced as restorative strategies in PD animals 
and patients, but ethical and immunological problems as well as the serious side effects of tu-
morigenesis and disabling dyskinesia have limited clinical application of these stem cells. Mean-
while, cell therapy using mesenchymal stem cells (MSCs) is attractive clinically because these 
cells are free from ethical and immunological problems. MSCs are present in adult bone mar-
row and represent <0.01% of all nucleated bone marrow cells. MSCs are themselves capable of 
multipotency, differentiating under appropriate conditions into chondrocytes, skeletal myocytes, 
and neurons. According to recent studies, the neuroprotective effect of MSCs is mediated by 
their ability to produce various trophic factors that contribute to functional recovery, neuronal 
cell survival, and stimulation of endogenous regeneration and by immunoregulatory properties 
that not only inhibit nearly all cells participating in the immune response cell-cell-contact-de-
pendent mechanism, but also release various soluble factors associated with immunosuppres-
sive activity. However, the use of MSCs as neuroprotectives in PD and MSA has seldom been 
studied. Here we comprehensively review recent advances in the therapeutic roles of MSCs in 
PD and MSA, especially focusing on their neuroprotective properties and use in disease-mo-
difying therapeutic strategies.  J Clin Neurol 2009;5:1-10
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Introduction 
 

Parkinson’s disease (PD) is a chronic neurodegenerative dis-
ease characterized by the selective loss of dopaminergic neu-
rons and the presence of Lewy bodies, which are protein-
aceous inclusions that contain α-synuclein, synphilin-1, com-
ponents of the ubiquitin proteasomal pathway, and parkin in 
the substantia nigra (SN).1 Recent studies have suggested that 
the pathogenesis of neuronal degeneration in PD involves 
several molecular and cellular events, including oxidative st-
ress, proapoptotic mechanisms, mitochondrial dysfunction, 
and the accumulation of toxic proteins resulting from dys-
function of the protein degradation system.1,2 This results in 
the emergence of parkinsonian motor symptoms such as brad-

ykinesia, rigidity, tremor, or postural instability when 70% of 
dopaminergic neurons in the SN are lost. PD is the only 
chronic neurodegenerative disease for which there are effec-
tive symptomatic treatments involving dopaminergic regimens. 
Nevertheless, these therapies do not change the progressive 
nature of PD and, moreover, they are ineffective against some 
axial symptoms of gait freezing and postural instability, which 
are more disabling than tremors and rigidity.3 In addition, as 
PD progresses, dopaminergic therapies result in disabling 
drug-induced motor complications, such as “wearing off” 
and dyskinesia. 

As alternatives for the treatment of PD, cell therapies with 
dopamine-producing cells that replace dying dopaminergic 
cells with permanent dopaminergic neurons have been wide-
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ly considered for future therapies, and PD has been regarded 
as the best candidate neurodegenerative disease for cell th-
erapy for following reasons: 1) PD is a unique disease in-
volving the selective destruction of dopaminergic neurons in 
the SN, 2) nigral dopaminergic neurons primarily modulate 
striatal function and provide tonic stimulation of target recep-
tors, and 3) downstream basal ganglia neurons are relatively 
preserved.4 Thus, numerous sources of dopamine-generating 
cell treatments (e.g., embryonic stem cells, fetal mesenceph-
alic neurons, and neural stem cells) have been developed and 
tested in animal models of PD as well as in patients with PD. 
Of those, transplantation of embryonic mesencephalic neu-
rons in PD was clinically initiated in 1987 and -350 patients 
with PD underwent operations.5 In spite of the long-term 
survival of transplanted cells with clinical and radiological 
improvement after transplantation in open-label trials, the re-
sults of two double-blind controlled trials were not encourag-
ing, and cell transplantation remains currently far from an op-
timal therapeutic strategy.6,7 

 
Beyond the Concept of Cell Therapy 

as a Tool for Replacement of 
Dopaminergic Neurons  
in Parkinson’s Disease 

 
Parkinson’s disease is a multiple system disease 
involving the nigral and extranigral systems 
Studies of PD have traditionally focused on motor symptoms 
such as bradykinesia, tremor, rigidity, and postural instability, 
which originate from the loss of dopaminergic neurons in the 
SN of the midbrain. However, recent clinical and patholog-
ical studies have demonstrated that PD is a complex disease 
involving multiple systems including the nigral motor sys-
tem, which is mediated by dopaminergic neuronal loss, as 
well as extranigral non-motor systems by non-dopaminergic 
neuronal loss. The olfactory, autonomic, sleep, and cognitive 
systems are representative affected non-motor systems in 
PD.8 Based on recent pathoanatomical studies, Braak sug-
gested that the chronological process of PD pathology. Ac-
cording to his staging system,9,10 2 main induction sites of 
PD pathology exist: the olfactory bulb or anterior olfactory 
nucleus and enteric nerve cell plexus. Form these sites, PD 
pathology tends to evolve to other rostral brain areas in a bot-
tom-up fashion, with parkinsonian motor symptoms emerg-
ing at stage 3, when the disease involves the midbrain. Thus, 
α-synuclein accumulation in these non-motor systems-ex-
cept for the effects on the cognitive system, which manifest 
in the final stage-precede nigral dopaminergic neuronal pa-
thology, and the functional losses of these nonmotor systems 
(especially olfactory and cardiac sympathetic systems) appear 

to be closely coupled and are independent of the clinical nig-
ral motor status.11 Most importantly, these non-motor symp-
toms are as disabling as nigral motor symptoms.3 Furthermore, 
PD dementia, which is known to be mediated by cholinergic 
depletion and thus not to be responsive to dopaminergic th-
erapy, is the most important factor influencing the daily acti-
vities and survival of PD patients.  

  
Lessons from double-blind placebo trial of trans-
plantation of fetal mesencephalic neurons 
It has been suggested that differences in patient selection, im-
munosuppression protocols, and tissue storage and prepara-
tion may strongly influence the negative outcomes of the 
large placebo-controlled studies.12 However, most clinical 
concerns have focused on the development of graft-induced 
dyskinesia. Freed et al.6 reported that 15% of their grafted 
patients developed severe postoperative dyskinesias in the 
“off” state. Hagell et al.13 found that 6 of 14 PD patients with 
grafted mesencephalic stem cells displayed postoperative 
“off”-phase dyskinesias of moderate severity. Olanow et al.7 
found that 56.5% of grafted patients developed postoperative 
“off”-state dyskinesias showing stereotypic, rhythmic move-
ments in the lower extremities, which is phenomenologically 
different from L-dopa-induced peak-dose dyskinesia.  

Uneven graft-derived dopaminergic innervation of the st-
riatum,13 inflammation around the implants,14,15 the presence 
of different subpopulations of dopaminergic neurons in the 
graft,16 and inappropriate synaptic contacts14 are several pos-
sible explanations for graft-induced dyskinesia. However, the 
exact mechanism and strategies to avoid dyskinesia are still 
speculative. 

 
Host-to-graft disease propagation of Parkinson’s 
disease pathology 
Three independent laboratories recently reported autopsy 
findings from eight subjects who received fetal mesenceph-
alic neurons transplantation. Of those, Kordower et al.17 re-
ported two subjects with PD who exhibited the long-term sur-
vival of transplanted fetal mesencephalic dopaminergic neu-
rons (11-16 years) that developed α-synuclein-positive Lewy 
bodies in grafted neurons. Li et al.18 reported that 14 years 
after grafted nigral neurons were transplanted into the stria-
tum of an individual with PD, they were found to have Lewy 
body-like inclusions that stained positively for α-synuclein 
and ubiquitin and exhibited reduced immunostaining for do-
pamine transporters. However, Mendez et al.19 reported no 
PD pathology in grafted neurons in a postmortem analysis of 
five subjects with PD at 9-14 years after the transplantation 
of fetal midbrain cell suspensions. Although these case stud-
ies have produced conflicting results, the data suggest that 
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the PD microenvironment is prone to ongoing neuronal 
death and can affect grafted cells in hosts with a similar 
pathogenesis as in the host dopaminergic neurons, thus lead-
ing to pathology propagation from host to graft. The clinical 
relevance of this-in terms of the long-term clinical efficacy, 
the frequency that grafted dopaminergic neurons undergo 
PD pathology, and contributing factors-has remained unclear. 
Nevertheless, it is possible that newly generated PD pathol-
ogy in grafted dopaminergic neurons exert detrimental ef-
fects on the function of grafted dopaminergic and limit the 
long-term clinical efficacy of dopaminergic replacement th-
erapy. Along with complex PD etiopathogenesis mechanisms, 
the nature of PD involving the extranigral systems and the 
clinical problems with dopaminergic replacement therapy 
are important issues to be resolved for future clinical cell-
based therapies involving dopaminergic replacement. 

 
Characteristics of Mesenchymal  

Stem Cells 
 
Mesenchymal stem cells (MSCs) present in adult bone mar-
row normally provide structure and functional support for 
hemopoiesis, and they represent <0.01% of all nucleated 
bone marrow cells. Mesenchymal cells are primordial cells 
of mesodermal origin that are capable of multipotency, dif-
ferentiating under appropriate conditions into chondrocytes, 
skeletal myocytes, and neurons.20,21 Because they exhibit 
diverse characteristics and consist of a heterogeneous cell 
population, their true nature is not fully known. Most MSC 
populations express mesenchymal markers such as CD29 (β-
1 integrin), CD90 (Thy-1), CD54 (intracellular adhesion mo-
lecule), CD44 (homing-associated cell adhesion molecule), 
CD71 (transferrin receptor), CD105 (SH2), SH3, Stro-1, and 
CD13, but they do not express markers typical of hematopo-
ietic and endothelial cell lineages, such as CD11b, CD14, CD 
31, CD33, CD34, CD 133, and CD45.22 Cell therapy with 
MSCs has advantages in clinical applications. MSCs can be 
easily harvested from the bone marrow of the patient, easily 
expanded on a large scale for autotransplantation, and admi-
nistered to patients via various routes, including intravenous, 
intra-arterial, intrathecal, or intralesional infusion. Additionally, 
cell therapy with MSCs is free from ethical and immunological 
problems, which contrasts with embryonic stem cell therapy. 

 
Mesenchymal stem cells as cytotrophic 
mediators 
Neurotrophic factors (NTFs) are essential for neuronal sur-
vival and differentiation and hence also to the development 
and maintenance of normal neuronal function in adults. 
NTFs include several families of structurally and functionally 

related molecules: the nerve growth factor (NGF) super-
family that comprises two structurally related proteins, nam-
ely the brain-derived neurotrophic factor (BDNF) and NGF3; 
the glial-cell-line-derived neurotrophic factor (GDNF) fam-
ily; the neurokine superfamily; and the nonneuronal growth 
factor superfamily. The NTFs relevant to PD are GDNF, 
BDNF, and neurturin. According to experimental studies us-
ing neurotoxin-induced PD models, NTFs slow the progres-
sion of degeneration, enhance the activity of remaining neu-
rons, induce regeneration, support the survival of transplant-
ed dopaminergic cells, and induce proliferation and differen-
tiation of neural stem cells.23 Thus, the effectiveness of NTFs 
in protecting or restoring dopaminergic neurons increases the 
possibility of applying them clinically as a neuroprotective 
therapy. However, open-label and double-blinded clinical tr-
ials with GDNF in PD have been controversial because of 
debate regarding the GDNF dose and delivery methods. 

There is ample evidence that MSCs produce a variety of 
NTFs and lead to increased neuronal survival, endogenous 
cell proliferation, and nerve fiber regeneration.24,25 Crigler et 
al.26 demonstrated that MSCs express BDNF and β-NGF, 
and Arnhold et al.27 showed that naive MSCs cultivated in a 
standard medium express BDNF, NGF, and GDNF. There-
fore, the synthesis and release of NTFs relevant to PD by 
transplanted MSCs or indirect stimulation of neurotrophic 
release from host tissue might partly contribute to functional 
recovery, neuronal cell survival, and stimulation of endoge-
nous regeneration after MSC transplantation.28  

 
Mesenchymal stem cells as immunomodulators 
Recent human and animal studies demonstrated that a glial 
reaction and inflammatory processes may participate in a 
cascade of neuronal degeneration in PD. A postmortem study 
described extensive proliferation of reactive amoeboid mi-
croglia in the SN of PD patients,29 suggesting that activating 
microglia induces dopaminergic neurodegeneration. Another 
pathological study demonstrated the presence of activated 
microglia in the SN of PD patients exposed to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP),30 which suggests 
that an ongoing stimulus can lead to disease progression long 
after the initial toxic insult. A positron-emission-tomography 
(PET) study using a radiotracer for activated microglia re-
vealed that microglial activation occurred in patients with 
early PD and was closely linked to the degree of dopaminer-
gic neuronal loss.31 Furthermore, increased levels of cytoki-
nes such as tumor necrosis factor (TNF)-α, interleukin (IL)-
1β, and interferon-γ have been demonstrated in the SN of PD 
patients.32,33 Evidence of inflammation in dopaminergic neu-
ronal death has also been documented in animal models of 
PD induced by numerous neurotoxins such as MPTP, 6-hy-
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droxydopamine, and rotenone.34-36 
Several in vitro and in vivo studies have shown that MSCs 

possess immunoregulatory properties. Although the exact 
underlying mechanism is unclear, in vitro studies suggest 
that MSCs can not only inhibit nearly all cells participating 
in the immune response cell-cell-contact-dependent mecha-
nism, but can also release various soluble factors that might 
be involved in the immunosuppressive activity of MSCs.37-39 
Recent animal studies in an experimental autoimmune ence-
phalomyelitis demonstrated that MSC treatment results in a 
significantly milder disease and fewer relapses compared to 
control animals, with a decreased number of inflammatory 
infiltrates and reduced demyelination and axonal loss.40,41 
Additionally, Guo et al.42 reported that MSC transplantation 
decreases the protein production and gene expression of in-
flammation cytokines and increases functional recovery from 
myocardial infarcts. These studies suggest that the anti-in-
flammatory action of MSCs is one of the mechanisms un-
derlying the tissue-protective effects.  

There is evidence from a large body of animal studies that 
inhibition of the inflammatory response prevents the degen-
eration of nigrostriatal dopaminergic neurons. For example, 
sodium salicylate and cyclooxygenase-2 inhibitors have been 
shown to significantly reduce dopaminergic neuronal loss 
induced by MPTP or lipopolysaccharide (LPS).43,44 Addi-
tionally, recent epidemiological studies have shown the be-
neficial effects of nonsteroidal anti-inflammatory drugs (NS-
AIDs) in the development and progression of PD.45,46 Thus, 
these studies raise the possibility that the inhibition of in-
flammation is a viable neuroprotective treatment strategy for 
PD patients. 

 
Homing effects 
MSCs characteristically migrate toward damaged tissues in 
animal models of ischemia as well as in the PD model in-
duced by 6-hydroxydopamine, possibly in response to signals 
that are up-regulated under injury conditions.47,48 Although 
the signals that guide MSCs to the damaged brain are un-
known, they might involve chemokines released from the dam-
aged brain and their receptors. Recent studies have demons-
trated that stromal-cell-derived factor-1 (SDF-1α) and its re-
ceptor CXCR4 play an important role in homing MSCs to 
ischemic brain lesions.49,50 SDF-1α is widely expressed in 
brain regions such as the cortex, cerebellum, and globus pal-
lidus, as well as in the SN pars compacta.51 Therefore, as in 
ischemic brain lesions, it is speculated that damage in the ni-
grostriatal system of PD animal models induced by neuro-
toxins increases the expressions of SDF-1α and CXCR4, 
leading to the recruitment of MSCs to the SN. The number 
of transplanted MSCs that migrate to the nigral area is un-

known in PD animal models, but such migrated cells might 
contribute to the production of trophic factors and inhibit mi-
croenvironmental cascades of the neurodegenerative process 
in nigral dopaminergic neurons. 

 
Neuroprotective Effects 

of Mesenchymal Stem Cells in Animal 
Models of Parkinson’s Disease 

 
Many candidates for neuroprotective agents have been tested 
in PD animal models. However, most drug candidates have 
been tested in acute or subacute neurotoxin-induced animal 
models, with the compounds administered before the de-
velopment of PD. To replicate clinical conditions as closely 
as possible when testing neuroprotective agents in a PD ani-
mal model, the model should have the same chronic, pro-
gressive nature, and the administration of candidate drugs 
should start after neuronal loss in the SN has started.52 Chron-
ic progressive PD animal models using the systemic injec-
tion of proteasome inhibitors are interesting in this regard,53 
but there has been extensive debate concerning the outcome 
of the nigral neuronal loss as well as unidentified factors that 
are responsible for the observed discrepancies in the results 
obtained, such as variation in the properties of proteasome 
inhibitors, environmental factors, and differences in dosing 
and bioavailability of the toxin in the brain.54-58 

 
Neuroprotective effect of mesenchymal stem 
cells in progressive Parkinson’s disease models 
using MG-132 
We recently evaluated whether MSCs exerted a protective 
effect on progressive dopaminergic neuronal loss in vitro and 
in vivo using MG-132, which is a nonspecific proteasome in-
hibitor (Fig. 1).59 Treating dopaminergic neurons in primary 
mesencephalic cultures with MSCs for 24 h significantly de-
creased dopaminergic neuronal loss induced by a 2-h admin-
istration of MG-132, and also significantly reduced caspase-
3 activity. In rats that received systemic injections of MG-132, 
there was a progressive decline in the number of tyrosine-
hydroxylase-immunoreactive (TH-ir) cells, which was more 
prominent in the lateral than in the medial regions of the SN. 
MSC treatment of MG-132-treated rats dramatically increased 
TH-ir cell survival in the SN, by approximately 50%. Further-
more, MSC treatment markedly decreased the accumulation 
of polyubiquitinated proteins and caspase-3 activity follow-
ing MG-132 treatment as well as significantly reduced mi-
croglial activation in MG-132-treated animals. 

Accordingly, the neuroprotective mechanism of MSC in 
this progressive experimental model of PD appears to be more 
complex and pleiotropic, which might be mediated via the 
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modulation of apoptosis, ubiquitin-proteasome function, and 
microglia activation. Although the initial triggering events of 
dopaminergic neuronal death in PD remain unknown, apop-
tosis and altered proteasome activity could play pivotal roles 
in the pathogenesis of PD. The presence of apoptosis-me-
diated dopaminergic neuronal death is suggested by DNA 
fragmentation and chromatin clumping in dopaminergic neu-

rons coupled with up-regulation of signals associated with 
apoptosis in PD patients.60 Recent genetic, postmortem, and 
experimental studies have also suggested that proteasomal 
dysfunction plays an important role in the accumulation of 
toxic proteins and, consequently, neurodegeneration in the 
SN, which is mediated by an imbalance between the degra-
dation and clearance of abnormal proteins.61 Additionally, 
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Fig. 1. Effects of cell therapy with human mesenchymal stem cells (hMSCs) on animals treated with MG-132. Immunohistochemical analy-
sis showed that hMSC treatment dramatically reduced the decline in the number of TH-ir cells in the SN of MG-132-treated rats (A). Ste-
reological analysis revealed that the number of TH-ir cells was significantly higher in the hMSC-treatment group than in the group treated 
with MG-132 alone (n=5; p<0.05, B). Dopamine levels in the striatum (as assessed by gas chromatography-mass spectrometry) were 
significantly lower in MG-132-treated rats than in controls (p<0.01); however, hMSC treatment significantly increased the dopamine level in 
the striatum of MG-132-treated rats (n=5; p<0.05, C). MG-132 treatment resulted in the accumulation of polyubiquitinated proteins and a
markedly increase in OX-6 immunoreactivity; however, hMSC treatment markedly decreased the accumulation of polyubiquitinated proteins 
and OX-6 immunoreactivity in MG-132-treated rats (D and E). The level of the cleaved form of caspase-3 was significantly lower in rats treated
with hMSCs (F) than in MG-132-treated rats (n=3, G). Scale bar: 100 μm. *p<0.05, **p<0.01. SN: substantia nigra, TH-ir: tyrosine-hydro-
xylase-immunoreactive. 
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microglial activation appears to occur before the death of 
dopaminergic neurons, and activated microglia continue to 
promote degeneration of dopaminergic neurons,34 with the 
degree of dopaminergic cell loss possibly paralleling the mi-
croglial response.35  
 
Neuroprotective effects of human mesenchymal 
stem cells on dopaminergic neurons via anti-in-
flammatory actions 
There is evidence from experimental studies of ischemic heart 

disease and autoimmune diseases that MSCs exert tissue-
protective effects via anti-inflammatory actions,40-42 and we 
have used LPS-induced in vitro and in vivo inflammation 
models to investigate whether MSCs exert protective effects 
on the dopaminergic system via an anti-inflammatory mech-
anism (Fig. 2).62 In coculture experiments using a Transwell 
culture chamber system to physically separate LPS-stimu-
lated microglia and MSCs in order to inhibit cell-cell contact, 
we found that MSCs decreased the number of activated 
forms of microglia and increased the expressions of the anti-
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Fig. 2. Coculturing hMSCs with LPS-stimulated microglia in a Transwell culture chamber system decreased microglial activation and increased
the expressions of IL-6, IL-10, and TGF-β. To identify soluble factors associated with modulation of microglial activation, we analyzed the
expressions of IL-6, IL-10, and TGF-β in hMSCs cocultured with LPS-stimulated microglia and in hMSCs alone. The inclusion of hMSCs 
significantly decreased the number of process-bearing activated microglia at 6 and 24 h following hMSC treatment (A). When hMSCs were 
cocultured with LPS-stimulated microglia, IL-6 expression was significantly increased at 3 and 12 h, and the expressions of IL-10 and TGF-β 
at 12 h were significantly higher than those with hMSCs alone (B). Immunohistological evaluation of protective effect of hMSCs against LPS-
induced damage to dopaminergic neurons in the SN. hMSC treatment considerably reduced the loss of TH-ir cells and microglial activation 
induced by LPS stimulation in the SN (C, Scale bar: 100 mm). Stereological analysis revealed that hMSC treatment significantly decreased
the loss of TH-ir cells at 7 and 14 days following LPS stimulation (D, *p<0.05). The administration of hMSCs significantly down-regulated the 
LPS-induced increase in the expressions of TNF-α and iNOS mRNA at 3 days after LPS stimulation (E). hMSCs: human mesenchymal 
stem cells, LPS: lipopolysaccharide, IL: interleukin, TGF-β: transforming growth factor β, SN: substantia nigra, TNF-α: tumor necrosis factor-α. 
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inflammatory cytokines IL-6, IL-10, and transforming growth 
factor β (TGF-β). Furthermore, MSCs decreased the 
production of TNF-α and inducible nitroc oxide synthase 
(iNOS) from microglia stimulated by LPS in a contact-inde-
pendent manner. In cocultures of microglia and mesenceph-
alic neurons, the anti-inflammatory actions of MSCs actually 
resulted in a significant decrease (up to -50%) in dopaminer-
gic neuronal death induced by LPS stimulation. Furthermore, 
an in vivo study found that MSC administration dramatically 
decreased dopaminergic neuronal loss in the SN induced by 
LPS stimulation and MPTP treatment, which was clearly 
accompanied by attenuation of microglial activation, as well 

as TNF-α and iNOS mRNA expressions and the production 
of TNF-α. These data show that the neuroprotective effects 
of MSCs on dopaminergic neurons act via an anti-inflamma-
tory mechanism mediated by the modulation of microglial 
activation, thus confirming similar observations in animal mo-
dels of PD.  

 
Issues regarding transdifferentiating mesenchy-
mal stem cells into dopaminergic neurons 
Recent studies have indicated that human MSCs can differ-
entiate into neuron-like cells.20,21,63 Moreover, Blondheim et 
al.64 demonstrated that MSCs can express several specific 
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Fig. 3. Changes from baseline scores (mean and SE values) on the Unified Multiple System Atrophy Rating Scale (UMSARS) for MSC-
treated and control patients throughout the 12 months of follow-up (A). UMSARS I analysis between MSC-treated and control patients (B:
black squares=MSC-treated patients; gray triangles=control patients). The improvement on the UMSARS was significantly greater in the 
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neuronal markers and transcriptional factors, with a large 
proportion of the genes participating in the neuro-dopami-
nergic system. Barzilay et al.65 recently reported a serum-
free controlled differentiation protocol that yielded dopa-
mine-producing cells from MSCs, with more than 30% of 
the cells expressing significant levels of TH. There have been 
a few reports of MSCs differentiating into TH-ir neurons in 
in vivo studies, but the results were contradictory. Li et al.48 
reported that MSCs injected intrastriatally exhibited the 
phenotype of dopaminergic neurons in MPTP animal models, 
and Blondheim et al.64 and Offen et al.66 demonstrated that 
intrastriatal transplantation of undifferentiated and differen-
tiated MSCs in 6-hydroxydopamine-induced animal models 
led to the expression of TH in the striatum. However, Ye et 
al.67 did not find BrdU and TH-ir cells in the striatum, and 
suggested that functional recovery in MSC-treated rats is not 
associated with differentiation of MSCs into TH-ir neurons. 
We found that approximately 35.7% of surviving MSCs in 
the SN displayed TH immunoreactivity in progressive PD 
animal models and that TH-ir cells could be immunostained 
with human-specific synaptophysin, suggesting that TH-ir 
cells have a dopaminergic function. However, there are no 
data confirming the transdifferentiation of MSCs into func-
tional dopaminergic neurons.  

 
Neuroprotective Effects of 

Mesenchymal Stem Cells in Patients 
with Multiple System Atrophy 

 
Multiple system atrophy (MSA) is a sporadic, progressive, 
adult-onset neurodegenerative disorder associated with vary-
ing degrees of parkinsonism, autonomic dysfunction, and cer-
ebellar ataxia, and is characterized pathologically by wide-
spread α-synuclein-positive glial cytoplasmic inclusions in 
the brain and spinal cord.68 Disease progression is much 
faster in MSA than in PD, and there is no drug treatment that 
provides MSA patients with consistent long-term benefits. 
Therefore, neuroprotective or regenerative strategies are re-
quired for managing MSA patients. We observed the long-
term clinical and radiological effects of MSCs in patients 
with MSA. In an open-label study design, the neurological 
deficits in 11 patients with MSA who received consecutively 
intra-arterial and 3 repeated intravenous injections for 3 
months were compared with 18 nontreated MSA patients.69 
The improvement in neurological deficits as measured on 
the Unified MSA Rating Scale was significantly greater in 
MSC-treated patients than in the control patients at all visits 
throughout the 12-month study period (Fig. 3A and B). Se-
rial PET scans performed on subgroups revealed that cere-
bral glucose metabolism in the follow-up scans of MSC-

treated patients was increased significantly in the cerebellum 
and frontal white matter, whereas cerebral glucose metabo-
lism in the follow-up scans of the control group decreased 
significantly in the cerebellum and brainstem (Fig. 3C and 
D). There were no serious adverse effects related to MSC 
therapy. Although the study is limited by its open-label trial 
design, with a double-blind placebo trial being required to 
resolve remaining controversies,70,71 it does provide clinical 
clues to the neuroprotective properties of MSCs in MSA.  

 
Conclusion 

 
There is ample evidence that MSCs exert neuroprotective 
effects against dopaminergic neuronal death. Complex me-
chanisms might underlie the functional recovery from PD by 
homing MSCs into the SN, modulation of apoptosis, ubiqui-
tin-proteasome function, and immunomodulation from mi-
grated cells, thus inhibiting microenvironmental cascades of 
the neurodegenerative process in nigral dopaminergic neu-
rons. The advantages of MSCs in clinical applications could 
mean that their neuroprotective properties have major thera-
peutic implications as candidate disease-modifying strategies 
for PD and MSA . 
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